Self Control and Server-Supervisory Control for Multiple Mobile Robots, and its Applicability to Intelligent DNC System

Author:

Nagata F.1,Yamashiro T.1,Kitahara N.1,Otsuka A.1,Watanabe K.2,Habib Maki K.3ORCID

Affiliation:

1. Tokyo University of Science, Japan

2. Okayama University, Japan

3. The American University in Cairo, Egypt

Abstract

Multiple mobile robots with six PSD (Position Sensitive Detector) sensors are designed for experimentally evaluating the performance of two control systems. They are self-control mode and server-supervisory control mode. The control systems are considered to realize swarm behaviors such as Ligia exotica. This is done by using only information of PSD sensors. Experimental results show basic but important behaviors for multiple mobile robots. They are following, avoidance, and schooling behaviors. The collective behaviors such as following, avoidance, and schooling emerge from the local interactions among the robots and/or between the robots and the environment. The objective of the study is to design an actual system for multiple mobile robots, to systematically simulate the behaviors of various creatures who form groups such as a school of fish or a swarm of insect. Further, the applicability of the server-supervisory control scheme to an intelligent DNC (Direct Numerical Control) system is briefly considered for future development. DNC system is an important peripheral apparatus, which can directly control NC machine tools. However, conventional DNC systems can neither deal with various information transmitted from different kinds of sensors through wireless communication nor output suitable G-codes by analyzing the sensors information in real time. The intelligent DNC system proposed at the end of the chapter aims to realize such a novel and flexible function with low cost.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3