Gravitational Search Algorithm

Author:

Nezamabadi-Pour Hossein1,Barani Fatemeh2

Affiliation:

1. Shahid Bahonar University of Kerman, Iran

2. Higher Education Complex of Bam, Iran

Abstract

During the last decades, several metaheuristics have been developed to solve complex engineering optimization problems which most of them have been inspired by natural phenomena and swarm behaviors. Metaheuristics are the most selected techniques to find optimal solution intelligently in many areas of scheduling, space allocation, decision making, pattern recognition, document clustering, control objectives, image processing, system and filter modeling, etc. These algorithms have promised better solutions in single and multi-objective optimization. Gravitational search algorithm (GSA) is one of the recent created metaheuristic search algorithms, which is inspired by the Newtonian laws of gravity and motion. GSA was first proposed by Rashedi et al. and in the short time it became popular among the scientific community and researchers resulting in a lot of variants of the basic algorithm with improved performance. This chapter book presents a detailed review of the basic concepts of GSA and a comprehensive survey of its advanced versions. We propose a number of suggestions to the GSA community that can be undertaken to help move the area forward.

Publisher

IGI Global

Reference107 articles.

1. Multi Objective Gravitational Search Algorithm Using Non-dominated Fronts;M. A.Abbasian;Journal of Electrical Engineering,2012

2. A Clustering Based Archive Multi Objective Gravitational Search Algorithm

3. Ajami A., &Armaghan M., (2013). A multi-objective gravitational search algorithm based approach of power system stability enhancement with UPFC. Journal of Central South University, 20(6), 1536-1544.

4. Decision function estimation using intelligent gravitational search algorithm

5. Synchronous vs Asynchronous Gravitational Search Algorithm;N. A. A. B.Aziz;Proceedings of First International Conference on Artificial Intelligence, Modeling & Simulation,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3