Affiliation:
1. University of Delhi, India
Abstract
Recommender systems are widely used intelligent applications which assist users in a decision-making process to choose one item amongst a potentially overwhelming set of alternative products or services. Recommender systems use the opinions of members of a community to help individuals in that community by identifying information most likely to be interesting to them or relevant to their needs. Recommender systems have various core design crosscutting issues such as: user preference learning, security, mobility, visualization, interaction etc that are required to be handled properly in order to implement an efficient, good quality and maintainable recommender system. Implementation of these crosscutting design issues of the recommender systems using conventional agent-oriented approach creates the problem of code scattering and code tangling. An Aspect-Oriented Recommender System is a multi agent system that handles core design issues of the recommender system in a better modular way by using the concepts of aspect oriented programming, which in turn improves the system reusability, maintainability, and removes the scattering and tangling problems from the recommender system.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献