Affiliation:
1. Universidade de São Paulo, Brazil
Abstract
An efficient segmentation technique based on the use of a modified k-Means algorithm and the Otsu’s thresholding method is improved through a non-linear restoration of microscope volumes. An algorithm is proposed to automatically compute the k value for the clustering k-Means method. The unsupervised algorithm is used in the context of segmentation by considering regions as clusters. A comparison between the segmentation results before and after restoration is presented. The evaluation of the region segmentation included the root mean squared error and a normalized uniformity measure. Results showed significant improvement of segmentation when using the non-linear restoration method based on prior known information, such as the imaging system and the noise statistics.