Clustering Genes Using Heterogeneous Data Sources

Author:

Zeng Erliang1,Yang Chengyong2,Li Tao3,Narasimhan Giri3

Affiliation:

1. University of Notre Dame, USA

2. Life Technologies Inc., USA

3. Florida International University, USA

Abstract

Clustering of gene expression data is a standard exploratory technique used to identify closely related genes. Many other sources of data are also likely to be of great assistance in the analysis of gene expression data. This data provides a mean to begin elucidating the large-scale modular organization of the cell. The authors consider the challenging task of developing exploratory analytical techniques to deal with multiple complete and incomplete information sources. The Multi-Source Clustering (MSC) algorithm developed performs clustering with multiple, but complete, sources of data. To deal with incomplete data sources, the authors adopted the MPCK-means clustering algorithms to perform exploratory analysis on one complete source and other potentially incomplete sources provided in the form of constraints. This paper presents a new clustering algorithm MSC to perform exploratory analysis using two or more diverse but complete data sources, studies the effectiveness of constraints sets and robustness of the constrained clustering algorithm using multiple sources of incomplete biological data, and incorporates such incomplete data into constrained clustering algorithm in form of constraints sets.

Publisher

IGI Global

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3