Genetic Algorithm and Particle Swarm Optimization for Solving Balanced Allocation Problem of Third Party Logistics Providers

Author:

Rajesh R.1,Pugazhendhi S.2,Ganesh K.3

Affiliation:

1. Noorul Islam University, India

2. Annamalai University, India

3. IBM India Private Limited, India

Abstract

Third party logistics (3PL) service providers play a growing responsibility in the management of supply chain. The global and competitive business environment of 3PLs has recognized the significance of a speedy and proficient service towards the customers in the past few decades. Particularly in warehousing, distribution, and transportation services, a number of customers anticipate 3PLs to improve lead times, fill rates, inventory levels, etc. Therefore, the 3PLs are under demands to convene a range of service necessities of customers in an active and uncertain business environment. As a consequence of the dynamic environment in which supply chain must operate, 3PLs should sustain an effective distribution system of high performance and must make a sequence of inter-related decisions over time for their distribution networks. Warehouses play an important role in sustaining the continual flow of goods and materials between the manufacturer and customers. The performance of the 3PL supply chain network can be effortlessly enhanced by a balanced allocation of customers to warehouses. In this paper, the authors develop a genetic algorithm and a particle-swarm-optimisation algorithm for solving the balanced allocation problem and the results are encouraging.

Publisher

IGI Global

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward resilient cloud warehousing via a blockchain-enabled auction approach;Frontiers of Engineering Management;2023-02-14

2. Managing Transportation in Supply Chain;Handbook of Research on Recent Perspectives on Management, International Trade, and Logistics;2021

3. Finding Optimal Input Values for Desired Target Output by Using Particle Swarm Optimization Algorithm Within Probabilistic Models;Incorporating Nature-Inspired Paradigms in Computational Applications;2018

4. Using Particle Swarm Optimization Algorithm as an Optimization Tool Within Developed Neural Networks;Critical Developments and Applications of Swarm Intelligence;2018

5. Customer Profiling in Complex Analytical Environments Using Swarm Intelligence Algorithms;International Journal of Swarm Intelligence Research;2016-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3