Acoustic Modeling of Speech Signal using Artificial Neural Network

Author:

Sarma Mousmita1,Sarma Kandarpa Kumar1ORCID

Affiliation:

1. Gauhati University, India

Abstract

Acoustic modeling of the sound unit is a crucial component of Automatic Speech Recognition (ASR) system. This is the process of establishing statistical representations for the feature vector sequences for a particular sound unit so that a classifier for the entire sound unit used in the ASR system can be designed. Current ASR systems use Hidden Markov Model (HMM) to deal with temporal variability and Gaussian Mixture Model (GMM) for acoustic modeling. Recently machine learning paradigms have been explored for application in speech recognition domain. In this regard, Multi Layer Perception (MLP), Recurrent Neural Network (RNN) etc. are extensively used. Artificial Neural Network (ANN)s are trained by back propagating the error derivatives and therefore have the potential to learn much better models of nonlinear data. Recently, Deep Neural Network (DNN)s with many hidden layer have been up voted by the researchers and have been accepted to be suitable for speech signal modeling. In this chapter various techniques and works on the ANN based acoustic modeling are described.

Publisher

IGI Global

Reference54 articles.

1. Sub-band-based speech recognition.;H.Bourlard;Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing,1997

2. Connectionist Speech Recognition

3. Brown, P. A. (1987). The Acoustic Modeling Problem in Automatic Speech Recognition [Doctoral dissertation]. School of Computer Science at Carnegie Mellon University.

4. Dahl G. E., Yu D, Deng Li & Acero A. (2012). Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition. IEEE Transactions on Audio, Speech, and Language Processing. 20(1), 30-42.

5. Maximum likelihood from incomplete data via the EM algorithm.;A. P.Dempster;Journal of the Royal Statistical Society. Series B. Methodological,1977

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3