From Tf-Idf to Learning-to-Rank

Author:

Ibrahim Muhammad1,Murshed Manzur2

Affiliation:

1. Monash University, Australia

2. Federation University, Australia

Abstract

Ranking a set of documents based on their relevances with respect to a given query is a central problem of information retrieval (IR). Traditionally people have been using unsupervised scoring methods like tf-idf, BM25, Language Model etc., but recently supervised machine learning framework is being used successfully to learn a ranking function, which is called learning-to-rank (LtR) problem. There are a few surveys on LtR in the literature; but these reviews provide very little assistance to someone who, before delving into technical details of different algorithms, wants to have a broad understanding of LtR systems and its evolution from and relation to the traditional IR methods. This chapter tries to address this gap in the literature. Mainly the following aspects are discussed: the fundamental concepts of IR, the motivation behind LtR, the evolution of LtR from and its relation to the traditional methods, the relationship between LtR and other supervised machine learning tasks, the general issues pertaining to an LtR algorithm, and the theory of LtR.

Publisher

IGI Global

Reference104 articles.

1. Acharyya, S., Koyejo, O., & Ghosh, J. (2012). Learning to rank with bregman divergences and monotone retargeting. arXiv preprint arXiv:1210.4851.

2. Document selection methodologies for efficient and effective learning-to-rank

3. Learning concept importance using a weighted dependence model

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3