Analysing the Returns-Earnings Relationship

Author:

Beynon Malcolm J.1,Clatworthy Mark1

Affiliation:

1. Cardiff University, UK,

Abstract

This chapter considers the problem of understanding the relationship between company stock returns and earnings components, namely accruals and cash flows. The problem is of interest, because earnings are a key output of the accounting process, and investors have been shown to depend heavily on earnings in their valuation models. This chapter offers an elucidation on the application of a nascent data analysis technique, the Classification and Ranking Belief Simplex (CaRBS) and a recent development of it, called RCaRBS, in the returns-earnings relationship problem previously described. The approach underpinning the CaRBS technique is closely associated with uncertain reasoning, with methodological rudiments based on the Dempster-Shafer theory of evidence. With the analysis approach formed as a constrained optimisation problem, details on the employment of the evolutionary computation based technique trigonometric differential evolution are also presented. Alongside the presentation of results, in terms of model fit and variable contribution, based on a CaRBS classification-type analysis, a secondary analysis is performed using a development RCaRBS, which is able to perform multivariate regression-type analysis. Comparisons are made between the results from the two different types of analysis, as well as briefly with more traditional forms of analysis, namely binary logistic regression and multivariate linear regression. Where appropriate, numerical details in the construction of results from both CaRBS and RCaRBS are presented, as well emphasis on the graphical elucidation of findings.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3