Affiliation:
1. Sichuan University, China
2. Sichuan University for Nationalities, China
Abstract
There is still a challenge of creating an evaluation method which can not only unobtrusively collect data without supplement equipment but also objectively, quantitatively and real-time evaluate cognitive load of users based the data. The study explores the possibility of using the features extracted from high-frequency interaction (HFI) events to evaluate cognitive load to respond the challenge. Specifically, back-propagation neural networks, along with two feature selection methods (nBset and SFS), were used as the classifier and it was able to use a set of features to differentiate three cognitive load levels with an accuracy of 74.27%. The main contributions of the research are: (1) knowledge about what detailed features may be predictive of cognitive load changes; (2) demonstrating the potential of using the HFI features in discriminating different cognitive load when suitable classifier and features are adopted.