Online Adaptive Neuro-Fuzzy Based Full Car Suspension Control Strategy

Author:

Khan Laiq1,Qamar Shahid1

Affiliation:

1. COMSATS Institute of Information Technology, Pakistan

Abstract

Suspension system of a vehicle is used to minimize the effect of different road disturbances for ride comfort and improvement of vehicle control. A passive suspension system responds only to the deflection of the strut. The main objective of this work is to design an efficient active suspension control for a full car model with 8-Degrees Of Freedom (DOF) using adaptive soft-computing technique. So, in this study, an Adaptive Neuro-Fuzzy based Sliding Mode Control (ANFSMC) strategy is used for full car active suspension control to improve the ride comfort and vehicle stability. The detailed mathematical model of ANFSMC has been developed and successfully applied to a full car model. The robustness of the presented ANFSMC has been proved on the basis of different performance indices. The analysis of MATLAB/SMULINK based simulation results reveals that the proposed ANFSMC has better ride comfort and vehicle handling as compared to Adaptive PID (APID), Adaptive Mamdani Fuzzy Logic (AMFL), passive, and semi-active suspension systems. The performance of the active suspension has been optimized in terms of displacement of seat, heave, pitch, and roll.

Publisher

IGI Global

Reference79 articles.

1. Abbas, Asghar, & Qamar. (2012). Sliding mode control for coupled-tank liquid level control system. In Proceedings of 10th International Conference on Frontiers of Information Technology. Pakistan: IEEE Press.

2. A quarter-car experimental analysis of alternative semi-active control methods.;Journal of Intelligent Material Systems and Structures,2000

3. Alleyne, A., & Hedrick, J. K. (2009). Nonlinear control of a quarter car active suspension. American Control Conference, 21-25.

4. Application of nonlinear control theory to electronically controlled suspensions.;A.Alleyne;Vehicle System Dynamics,1997

5. Nonlinear adaptive control of active suspensions

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3