Multiscale Filtering and Applications to Chemical and Biological Systems

Author:

Nounou Mohamed N.1,Nounou Hazem N.2,Madakyaru Muddu2

Affiliation:

1. Texas A&M University at Qatar,Qatar

2. Texas A&M University at Qatar, Qatar

Abstract

Measured process data are a valuable source of information about the processes they are collected from. Unfortunately, measurements are usually contaminated with errors that mask the important features in the data and degrade the quality of any related operation. Wavelet-based multiscale filtering is known to provide effective noise-feature separation. Here, the effectiveness of multiscale filtering over conventional low pass filters is illustrated though their application to chemical and biological systems. For biological systems, various online and batch multiscale filtering techniques are used to enhance the quality of metabolic and copy number data. Dynamic metabolic data are usually used to develop genetic regulatory network models that can describe the interactions among different genes inside the cell in order to design intervention techniques to cure/manage certain diseases. Copy number data, however, are usually used in the diagnosis of diseases by determining the locations and extent of variations in DNA sequences. Two case studies are presented, one involving simulated metabolic data and the other using real copy number data. For chemical processes it is shown that multiscale filtering can greatly enhance the prediction accuracy of inferential models, which are commonly used to estimate key process variables that are hard to measure. In this chapter, we present a multiscale inferential modeling technique that integrates the advantages of latent variable regression methods with the advantages of multiscale filtering, and is called Integrated Multiscale Latent Variable Regression (IMSLVR). IMSLVR performance is illustrated via a case study using synthetic data and another using simulated distillation column data.

Publisher

IGI Global

Reference70 articles.

1. Alqallaf, A., & Tewfik, A. (2007). DNA copy number detection and sigma filter. IEEE International Workshop on Genomic Signal Processing and Statistics, GENSIPS, 1–4. IEEE Press.

2. Amd, P., & Morozov, A. R. (2001). Markov chain Monte Carlo computation of confidence intervals for substitution-rate variation in proteins. Proceedings of Pacific Symposium of Biocomputing, 203–214. Singapore: World Scientific Publishing.

3. Wavelet based fractal analysis of DNA sequences.;A.Arneodo;Physica D. Nonlinear Phenomena,1996

4. What can we learn with wavelets about DNA sequences?

5. Kernel independent component analysis.;F. R.Bach;Journal of Machine Learning Research,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3