Affiliation:
1. State University of Londrina, Brazil
2. State University of Campinas, Brazil
Abstract
This chapter presents a virtual environment implementation for embedded design, simulation, and conception of supervision and control systems for mobile robots, which are capable of operating and adapting to different environments and conditions. The purpose of this virtual system is to facilitate the development of embedded architecture systems, emphasizing the implementation of tools that allow the simulation of the kinematic, dynamic, and control conditions, in real time monitoring of all important system points. To achieve this, an open control architecture is proposed, integrating the two main techniques of robotic control implementation at the hardware level: systems microprocessors and reconfigurable hardware devices. The utilization of a hierarchic and open architecture, distributing the diverse actions of control in increasing levels of complexity and the use of resources of reconfigurable computation are made in a virtual simulator for mobile robots. The validation of this environment is made in a nonholonomic mobile robot and in a wheelchair; both of them used an embedded control rapid prototyping technique for the best navigation strategy implementation. After being tested and validated in the simulator, the control system is programmed in the control board memory of the mobile robot or wheelchair. Thus, the use of time and material is optimized, first validating the entire model virtually and then operating the physical implementation of the navigation system.
Reference28 articles.
1. An architecture for autonomy.;R.Alami;The International Journal of Robotics Research,2009
2. Altera Corporation. (2011). AHDL. Retrieved from http://www.altera.com
3. A Fuzzy-Logic-Based Approach for Mobile Robot Path Tracking
4. Rapid Prototyping of a Model-Based Control With Friction Compensation for a Direct-Drive Robot
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献