GPU Based Image Quality Assessment using Structural Similarity (SSIM) Index

Author:

Khadtare Mahesh Satish1

Affiliation:

1. Pune University, Maharashtra, India

Abstract

This chapter deals with performance analysis of CUDA implementation of an image quality assessment tool based on structural similarity index (SSI). Since it had been initial created at the University of Texas in 2002, the Structural SIMilarity (SSIM) image assessment algorithm has become a valuable tool for still image and video processing analysis. SSIM provided a big giant over MSE (Mean Square Error) and PSNR (Peak Signal to Noise Ratio) techniques because it way more closely aligned with the results that would have been obtained with subjective testing. For objective image analysis, this new technique represents as significant advancement over SSIM as the advancement that SSIM provided over PSNR. The method is computationally intensive and this poses issues in places wherever real time quality assessment is desired. We tend to develop a CUDA implementation of this technique that offers a speedup of approximately 30 X on Nvidia GTX275 and 80 X on C2050 over Intel single core processor.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3