Affiliation:
1. University of Rochester, USA
Abstract
Face recognition is a sophisticated problem requiring a significant commitment of computer resources. A modern GPU architecture provides a practical platform for performing face recognition in real time. The majority of the calculations of an eigenpicture implementation of face recognition are matrix multiplications. For this type of computation, a conventional computer GPU is capable of computing in tens of milliseconds data that a CPU requires thousands of milliseconds to process. In this chapter, we outline and examine the different components and computational requirements of a face recognition scheme implementing the Viola-Jones Face Detection Framework and an eigenpicture face recognition model. Face recognition can be separated into three distinct parts: face detection, eigenvector projection, and database search. For each, we provide a detailed explanation of the exact process along with an analysis of the computational requirements and scalability of the operation.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Viola–Jones Method for Robot Vision Purpose: A Software Technical Review;EAI/Springer Innovations in Communication and Computing;2024
2. A Robust Biometrics System Using Finger Knuckle Print;Handbook of Research on Network Forensics and Analysis Techniques;2018