An Analysis of the Effects of Bad Smell-Driven Refactorings in Mobile Applications on Battery Usage

Author:

Rodríguez Ana Victoria1,Mateos Cristian1,Zunino Alejandro1,Longo Mathias2

Affiliation:

1. ISISTAN, Argentina

2. UNICEN, Argentina

Abstract

Mobile devices are the most popular kind of computational device in the world. These devices have more limited resources than personal computers and battery consumption is always under user's eye since mobile devices rely on their battery as energy supply. On the other hand, nowadays most applications are developed using object-oriented paradigm, which has some inherent features, like object creation, that consume important amounts of energy in the context of mobile development. These features are responsible for offering maintainability and flexibility, among other software quality-related advantages. Then, this chapter aims to present an analysis to evaluate the trade-off between object-oriented design purity and battery consumption. As a result, developers can design mobile applications taking into account these two issues, giving priority to object design quality and/or energy efficiency as needed.

Publisher

IGI Global

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study of Code Smells: A Review and Research Agenda;International Journal of Mathematical, Engineering and Management Sciences;2024-06-01

2. Investigating the Correlation between Performance Scores and Energy Consumption of Mobile Web Apps;Proceedings of the Evaluation and Assessment in Software Engineering;2020-04-15

3. An Approach for Semantically-Enriched Recommendation of Refactorings Based on the Incidence of Code Smells;Enterprise Information Systems;2018

4. Energy Implications of Common Operations in Resource-Intensive Java-Based Scientific Applications;New Advances in Information Systems and Technologies;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3