Bridging the Semantic Gap in Image Retrieval

Author:

Zhao Rhong1,Grosky William I.1

Affiliation:

1. Wayne State University, USA

Abstract

The emergence of multimedia technology and the rapidly expanding image and video collections on the Internet have attracted significant research efforts in providing tools for effective retrieval and management of visual data. Image retrieval is based on the availability of a representation scheme of image content. Image content descriptors may be visual features such as color, texture, shape, and spatial relationships, or semantic primitives. Conventional information retrieval was based solely on text, and those approaches to textual information retrieval have been transplanted into image retrieval in a variety of ways. However, “a picture is worth a thousand words.” Image content is much more versatile compared with text, and the amount of visual data is already enormous and still expanding very rapidly. Hoping to cope with these special characteristics of visual data, content-based image retrieval methods have been introduced. It has been widely recognized that the family of image retrieval techniques should become an integration of both low-level visual features addressing the more detailed perceptual aspects and high-level semantic features underlying the more general conceptual aspects of visual data. Neither of these two types of features is sufficient to retrieve or manage visual data in an effective or efficient way (Smeulders, et al., 2000). Although efforts have been devoted to combining these two aspects of visual data, the gap between them is still a huge barrier in front of researchers. Intuitive and heuristic approaches do not provide us with satisfactory performance. Therefore, there is an urgent need of finding the latent correlation between low-level features and high-level concepts and merging them from a different perspective. How to find this new perspective and bridge the gap between visual features and semantic features has been a major challenge in this research field. Our chapter addresses these issues.

Publisher

IGI Global

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-Time Interactive AR for Cognitive Learning;AI, IoT, Big Data and Cloud Computing for Industry 4.0;2023

2. Semantic Gap in Predicting Mental Wellbeing through Passive Sensing;CHI Conference on Human Factors in Computing Systems;2022-04-29

3. Semantic analysis on social networks: A survey;International Journal of Communication Systems;2020-04-16

4. Virtual reality: an aid as cognitive learning environment—a case study of Hindi language;Virtual Reality;2020-02-19

5. A procedural texture generation framework based on semantic descriptions;Knowledge-Based Systems;2019-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3