Deadline-Constrained Cost-Effective Load-Balanced Improved Genetic Algorithm for Workflow Scheduling

Author:

Bothra Sandeep Kumar1ORCID,Singhal Sunita1,Goyal Hemlata1

Affiliation:

1. Manipal University, Jaipur, India

Abstract

Resource scheduling in a cloud computing environment is noteworthy for scientific workflow execution under a cost-effective deadline constraint. Although various researchers have proposed to resolve this critical issue by applying various meta-heuristic and heuristic approaches, no one is able to meet the strict deadline conditions with load-balanced among machines. This article has proposed an improved genetic algorithm that initializes the population with a greedy strategy. Greedy strategy assigns the task to a virtual machine that is under loaded instead of assigning the tasks randomly to a machine. In general workflow scheduling, task dependency is tested after each crossover and mutation operators of genetic algorithm, but here the authors perform after the mutation operation only which yield better results. The proposed model also considered booting time and performance variation of virtual machines. The authors compared the algorithm with previously developed heuristics and metaheuristics both and found it increases hit rate and load balance. It also reduces execution time and cost.

Publisher

IGI Global

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Improved Genetic Algorithm in Structural Damage Detection System of Civil Environment;2023 International Conference on Applied Intelligence and Sustainable Computing (ICAISC);2023-06-16

2. Library Information Personalized Information Service Management System Based on Improved Genetic Algorithm;2023 International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2023-04-29

3. Computer Mathematical Modeling Based on Improved Genetic Algorithm;Lecture Notes on Data Engineering and Communications Technologies;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3