Binary Self-Adaptive Salp Swarm Optimization-Based Dynamic Load Balancing in Cloud Computing

Author:

Parida Bivasa Ranjan1,Rath Amiya Kumar1,Mohapatra Hitesh2ORCID

Affiliation:

1. Department of Computer Science and Engineering, Veer Surendra Sai University of Technology, Burla, Odisha, India

2. Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, AP, India

Abstract

In the recent era of cloud computing, the huge demand for virtual resource provisioning requires mitigating the challenges of uniform load distribution as well as efficient resource utilization among the virtual machines in cloud datacenters. Salp swarm optimization is one of the simplest, yet efficient metaheuristic techniques to balance the load among the VMs. The proposed methodology has incorporated self-adaptive procedures to deal with the unpredictable population of the tasks being executed in cloud datacenters. Moreover, a sigmoid transfer function has been integrated to solve the discrete problem of tasks assigned to the appropriate VMs. Thus, the proposed algorithm binary self-adaptive salp swarm optimization has been simulated and compared with some of the recent metaheuristic approaches, like BSO, MPSO, and SSO for conflicting scheduling quality of service parameters. It has been observed from the result analysis that the proposed algorithm outperforms in terms of makespan, response time, and degree of load imbalance while maximizing the resource utilization.

Publisher

IGI Global

Subject

General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3