Affiliation:
1. Charles Sturt University, Australia
Abstract
In this study, a data mining technique, specifically a decision tree, was applied to look at the similarities and differences between Islamists and Far Right extremists in the Profiles of Individual Radicalisation in the United States (PIRUS) dataset. The aim was to identify differences and similarities across various groups that may highlight overlaps and variations across both Islamists and Far Right extremists. The data mining technique analysed data in the PIRUS dataset according to the PIRUS codebook's grouping of variables. The decision tree technique generated a number of rules that provided insights about previously unknown similarities and differences between Islamists and Far Right extremists. This study demonstrates that data mining is a valuable approach for shedding light on factors and patterns related to different forms of violent extremism.
Subject
Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Safety Research,Safety, Risk, Reliability and Quality,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献