Rule Base Simplification and Constrained Learning for Interpretability in TSK Neuro-Fuzzy Modelling

Author:

Rajab Sharifa1

Affiliation:

1. University of Kashmir

Abstract

Neuro-fuzzy systems based on a fuzzy model proposed by Takagi, Sugeno and Kang known as the TSK fuzzy model provide a powerful method for modelling uncertain and highly complex non-linear systems. The initial fuzzy rule base in TSK neuro-fuzzy systems is usually obtained using data driven approaches. This process induces redundancy into the system by adding redundant fuzzy rules and fuzzy sets. This increases complexity which adversely affects generalization capability and transparency of the fuzzy model being designed. In this article, the authors explore the potential of TSK fuzzy modelling in developing comparatively interpretable neuro-fuzzy systems with better generalization capability in terms of higher approximation accuracy. The approach is based on three phases, the first phase deals with automatic data driven rule base induction followed by rule base simplification phase. Rule base simplification uses similarity analysis to remove similar fuzzy sets and resulting redundant fuzzy rules from the rule base, thereby simplifying the neuro-fuzzy model. During the third phase, the parameters of membership functions are fine-tuned using a constrained hybrid learning technique. The learning process is constrained which prevents unchecked updates to the parameters so that a highly complex rule base does not emerge at the end of model optimization phase. An empirical investigation of this methodology is done by application of this approach to two well-known non-linear benchmark forecasting problems and a real-world stock price forecasting problem. The results indicate that rule base simplification using a similarity analysis effectively removes redundancy from the system which improves interpretability. The removal of redundancy also increased the generalization capability of the system measured in terms of increased forecasting accuracy. For all the three forecasting problems the proposed neuro-fuzzy system demonstrated better accuracy-interpretability tradeoff as compared to two well-known TSK neuro-fuzzy models for function approximation.

Publisher

IGI Global

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3