A New Design of Intelligent Traffic Signal Control

Author:

Daneshfar Fatemeh1,RavanJamJah Javad1

Affiliation:

1. Department of Electrical and Computer Engineering, University of Kurdistan, Sanandaj, Iran

Abstract

Dynamic traffic signal control in Intelligent Transportation System (ITS) recently has received increasing attention. This paper proposed an adaptive and cooperative multi-agentfuzzy system for a decentralized traffic signal control. The proposed model has three levels of control, the current intersection traffic situation, its neighboring intersections recommendations and a knowledge base, which provides the current intersection traffic pattern. The proposed architecture comprises a knowledge base, prediction module and a traffic observer that provide data to real traffic data preparation module, then a decision-making layer takes decision to how long should the intersection green light be extended. Also every intersection flow is predicted in two different ways: 1- through a recursive algorithm. 2- based on a two stage fuzzy clustering algorithm. The proposed solution is tested with traffic control of a large connected junction and the result obtained is promising in comparison to the conventional fixed sequence traffic signal and to the vehicle actuated traffic signal control strategies which are the most applicable strategies in this area. Also to simulate the proposed traffic control solutions, a Netlogo-based traffic simulator has been developed as the agents’ world which simulates the roads, traffic flow and intersections.

Publisher

IGI Global

Subject

General Computer Science

Reference44 articles.

1. Estimation of green times and cycle time for vehicle- actuated signals;R.Akcelik;Transportation Research Record1457, TRB,1994

2. Delay at a Fixed Time Traffic Signal—I: Theoretical Analysis

3. An intelligent traffic control system using RFID

4. Babuska, R. (2001). Fuzzy and neural control. Delft University of Technology, 55–71.

5. Bertelle, C., Dutot, A., Lerebourg, S., & Olivier, D. (2003). Road traffic management based on ant system and regulation model. MAS conference.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3