Affiliation:
1. Delhi Institute of Advanced Studies, India
Abstract
Interval-valued intuitionistic fuzzy environment is appropriate for most of the practical scenarios involving uncertainty, vagueness, and insufficient information. Entropy, similarity, distance, inclusion, and cross entropy measures are a few methods used for measuring uncertainty and classifying fuzzy sets and its generalizations. Entropy of a fuzzy set describes fuzziness degree of the set and similarity measure measures similarity between two fuzzy or members of its extended family. This paper presents generalized entropy and similarity measures for interval-valued intuitionistic fuzzy sets. Further, the proposed similarity measure is compared with some existing measure of similarity with the help of an illustrative example, and a method is used to define optimal point using the existing information. Finally, entropy and similarity measures are used to identify best alternatives to solve multi-attribute decision making.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献