DDoS Attack Simulation and Machine Learning-Based Detection Approach in Internet of Things Experimental Environment

Author:

Chen Hongsong1,Meng Caixia2,Chen Jingjiu1

Affiliation:

1. University of Science and Technology, Beijing, China

2. Railway Police College, China

Abstract

Aiming at the problem of DDoS attack detection in internet of things (IoT) environment, statistical and machine-learning algorithms are proposed to model and analyze the network traffic of DDoS attack. Docker-based virtualization platform is designed and configured to collect IoT network traffic data. Then the packet-level, flow-level, and second-level network traffic datasets are generated, and the importance of features in different traffic datasets are sorted. By SKlearn and TensorFlow machine-learning software framework, different machine learning algorithms are researched and compared. In packet-level DDoS attack detection, KNN algorithm achieves the best results; the accuracy is 92.8%. In flow-level DDoS attack detection, the voting algorithm achieves the best results; the accuracy is 99.8%. In second-level DDoS attack detection, the RNN algorithm behaves best results; the accuracy is 97.1%. The DDoS attack detection method combined with statistical analysis and machine-learning can effectively detect large-scale DDoS attacks on the internet of things simulation experimental environment.

Publisher

IGI Global

Subject

Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3