Utilizing Sentence Embedding for Dangerous Permissions Detection in Android Apps' Privacy Policies
Author:
Affiliation:
1. University of Glasgow, UK
Abstract
Privacy policies analysis relies on understanding sentences meaning in order to identify sentences of interest to privacy related applications. In this paper, the authors investigate the strengths and limitations of sentence embeddings to detect dangerous permissions in Android apps privacy policies. Sent2Vec sentence embedding model was utilized and trained on 130,000 Android apps privacy policies. The terminology extracted by the sentence embedding model was then compared with the gold standard on a dataset of 564 privacy policies. This work seeks to provide answers to researchers and developers interested in extracting privacy related information from privacy policies using sentence embedding models. In addition, it may help regulators interested in deploying sentence embedding models to check for privacy policies' compliance with the government regulations and to identify points of inconsistencies or violations.
Publisher
IGI Global
Subject
Information Systems
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Runtime and Design Time Completeness Checking of Dangerous Android App Permissions Against GDPR;IEEE Access;2024
2. PermPress: Machine Learning-Based Pipeline to Evaluate Permissions in App Privacy Policies;IEEE Access;2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3