Perturbation-Based Fuzzified K-Mode Clustering Method for Privacy Preserving Recommender System

Author:

Sahoo Abhaya Kumar1,Raj Srishti1,Pradhan Chittaranjan1ORCID,Mishra Bhabani Shankar Prasad1,Barik Rabindra Kumar1ORCID,Vidyarthi Ankit2

Affiliation:

1. Kalinga Institute of Industrial Technology (Deemed), India

2. Jaypee Institute of Information Technology, India

Abstract

Recommender systems are extensively used today to ease out the problem of information overload and facilitate the product selection by users in e-commerce market. Both privacy and security are two major concerns of the user in these systems. For the protection of the user’s rating, there are several existing works on the basis of encryption or randomization methodologies. This paper proposes a methodology that not only protects the privacy of ratings but also provides better accuracy. After applying fuzzification on the user ratings, random rotation and perturbation methods are used before being fed to the collaborative filtering system. In this process, similar users are grouped into clusters by which recommendation is made. By considering different cluster size on four different datasets, the proposed fuzzified k-Mode clustering method provides less MAE and RMSE value as compared to other k-Means and k-Mode clustering approach and also achieves the better privacy than randomized perturbation method by obtaining IVDM value i.e. 0.67, 0.61, 0.55 and 0.7.

Publisher

IGI Global

Subject

Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review on Various Clustering Algorithm on Healthcare based Cloud Analytics;2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT);2023-01-23

2. Machine learning based data classification methods in cloud security using cloudlightning framework;2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC);2022-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3