Cardiac Arrhythmia, CHF, and NSR Classification With NCA-Based Feature Fusion and SVM Classifier

Author:

Deepak H. A. 1,Vijayakumar T. 1

Affiliation:

1. SJB Institute of Technology, India

Abstract

An arrhythmia is an irregular heartbeat that causes abnormal heart rhythms. Manual analysis of electrocardiogram (ECG) signals is not sufficient to quickly detect cardiac arrhythmias. This study proposes a deep learning approach based on a convolutional neural network (CNN) architecture for the classification of cardiac arrhythmias (ARR), congestive heart failure (CHF), and normal sinus rhythm (NSR). First, the ECG signal is converted into a 2D image using time-frequency conversion. The scalogram is constructed using a continuous wavelet transform to extract dynamic features. With CNN, each ECG signal is broken down into heartbeats, and then each heartbeat is converted into a 2D grayscale image of the heartbeat. Morphological feature extraction was performed by segmenting the QRS complex and detecting P and T waves. A third approach to feature extraction is dual-tree complex wavelet transform (DT-CWT). In addition, all extracted features are combined using neighborhood component analysis (NCA), and features are selected to classify using a support vector machine (SVM) classifier.

Publisher

IGI Global

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3