Affiliation:
1. National Institute of Technology, Tiruchirappalli, India
Abstract
Any road traffic management application of intelligent transportation systems (ITS) requires traffic characteristics data such as vehicle density, speed, etc. This paper proposes a robust and novel vehicle detection framework known as multi-layer continuous virtual loop (MCVL) that uses computer vision techniques on road traffic video to estimate traffic characteristics. Estimations of traffic data such as speed, area occupancy and an exclusive spatial feature named as corner detail value (CDV) acquired using MCVL are proposed. Further, the estimation of traffic congestion (TraCo) level using these parameters is also presented. The performances of the entire framework and TraCo estimation are evaluated using several benchmark traffic video datasets and the results are presented. The results show that the improved accuracy in vehicle detection process using MCVL subsequently improves the precision of TraCo estimation. This also means that the proposed framework is well suited to applications that need traffic characteristics to update their traffic information system in real time.
Subject
Decision Sciences (miscellaneous),Information Systems
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献