An Adaptive System for Retrieval and Composition of Learning Objects

Author:

Yoosooka Burasakorn1,Wuwongse Vilas1

Affiliation:

1. Asian Institute of Technology, Thailand

Abstract

This paper proposes a new approach to automatic retrieval and composition of Learning Objects (LOs) in an Adaptive Educational Hypermedia System (AEHS) using multidimensional learner characteristics to enhance learning effectiveness. The approach focuses on adaptive techniques in four components of AEHS: Learning Paths, LO Retrieval, LO Sequencing, and Examination Difficulty Levels. This approach has been designed to enable the adaptation of rules to become generic. Hence, the application to various domains is possible. The approach dynamically selects, sequences, and composes LOs into an individual learning package based on the use of domain ontology, learner profiles, and LO metadata. The Sharable Content Object Reference Model is employed to represent LO metadata and learning packages in order to support LO sharing. The IMS Learner Information Package Specification is used to represent learner profiles. A preliminary evaluation of the developed system indicates the system’s effectiveness in terms of learners’ satisfaction.

Publisher

IGI Global

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Reference31 articles.

1. W3C. (2004). OWL web ontology language. Retrieved May 5, 2009, from http://www.w3.org/TR/owl-features/

2. ACM. (2008). Computer science curricular. ACM Journal of Educational Resources in Computing. Retrieved October 29, 2008, from http://www.acm.org//education/curricula/ ComputerScience2008.pdf

3. ADL. (2004). Sharable content object reference model (SCORM). Retrieved December 14, 2008, from http://www.adlnet.gov/Technologies/scorm/ default.aspx

4. Anutariya, C., Wuwongse, V., Akama, K., & Wattanapailin, V. (2002). Semantic web modeling and programming with XDD. In Proceedings of the Emerging Semantic Web: Frontiers in Artificial Intelligence and Applications (Vol. 75). Retrieved May 4, 2009, from http://kr.cs.ait.ac.th/old/publications/ swws01.pdf

5. Brusilovsky, P. (1996). Methods and techniques of adaptive hypermedia. User Modeling and User-Adapted Interaction, 6(2), 87-129. Retrieved September 11, 2008, from http://www.springerlink.com/content/ x33q23n15373k164/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3