Cross Domain Framework for Implementing Recommendation Systems Based on Context Based Implicit Negative Feedback

Author:

Jhaveri Maitri1,Pareek Jyoti2

Affiliation:

1. Gujarat Law Society, India

2. Gujarat University, India

Abstract

The last decade met a remarkable proliferation of P2P networks, PDMS, semantic web, communitarian websites, electronic stores, etc. resulting in an overload of available information. One of the solutions to this information overload problem is using efficient tools such as the recommender system which is a personalization system that helps users to find items of interest based on their preferences. Several such recommendation engines do exist under different domains. However these recommendation systems are not very effective due to several issues like lack of data, changing data, changing user preferences, and unpredictable items. This paper proposes a novel model of Recommendation systems in e-commerce domain which will address issues of cold start problem and change in user preference problem. This model is based on studying implicit negative feedback from users in cross domain collaborative environment to identify user preferences effectively. The authors have also identified a list of parameters for this study.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3