Data Mining using Advanced Ant Colony Optimization Algorithm and Application to Bankruptcy Prediction

Author:

Arora Vishal1,Ravi Vadlamani2

Affiliation:

1. Department of Mathematics, Indian Institute of Technology Delhi, Haus Khaz, New Delhi, India

2. Institute for Development and Research in Banking Technology, Masab Tank, Hyderabad, India

Abstract

Ant Colony Optimization (ACO) is gaining popularity as data mining technique in the domain of Swarm Intelligence for its simple, accurate and comprehensive nature of classification. In this paper the authors propose a novel advanced version of the original ant colony based miner (Ant-Miner) in order to extract classification rules from data. They call this Advanced ACO-Miner (ADACOM). The main goal of ADACOM is to explore the flexibility of using a different knowledge extraction heuristic approach viz. Gini’s Index to increase the predictive accuracy and the simplicity of the rules extracted. Further, the authors increase the information and the prediction level of the set of rules extracted by dynamically changing specific parameters. Simulations are performed with ADACOM on a few benchmark datasets Wine, WBC (Wisconsin Breast Cancer) and Iris from UCI (University of California at Irvine) data repository and compared with Ant-Miner (Parpinelli, Lopes, & Freitas, 2002), Ant-Miner2 (Liu, Abbass, & McKay, 2002), Ant-Miner3 (Liu, Abbass, & McKay, 2003), Ant-Miner+ (Martens, De Backer, Haesen, Vanthienen, Snoeck, & Baesens, 2007) and C4.5 (Quinlan, 1993). The results show that ADACOM outperforms the above mentioned algorithms in terms of predictive accuracy, simplicity of rules, sensitivity, specificity and AUC values (area under ROC curve). In addition, the ADACOM is also employed to extract rules from bank datasets (UK, US, Spanish and Turkish) for bankruptcy prediction and the results are compared with that obtained by Ant-Miner. Again ADACOM yielded better results and is proven to be the better choice for solving bankruptcy prediction problems in banks

Publisher

IGI Global

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3