A Hybrid Method for Prediction and Assessment Efficiency of Decision Making Units

Author:

Rahimi Iman1,Behmanesh Reza2,Yusuff Rosnah Mohd.3

Affiliation:

1. Department of Mechanical and Manufacturing Engineering, Faculty of Engineering,, University of Putra Malaysia, Serdang, Selangor, Malaysia

2. Department of Accounting, Islamic Azad University, Khorasgan Branch, Isfahan, Iran

3. Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, University of Putra Malaysia, Serdang, Selangor, Malaysia

Abstract

The objective of this article is an evaluation and assessment efficiency of the poultry meat farm as a case study with the new method. As it is clear poultry farm industry is one of the most important sub- sectors in comparison to other ones. The purpose of this study is the prediction and assessment efficiency of poultry farms as decision making units (DMUs). Although, several methods have been proposed for solving this problem, the authors strongly need a methodology to discriminate performance powerfully. Their methodology is comprised of data envelopment analysis and some data mining techniques same as artificial neural network (ANN), decision tree (DT), and cluster analysis (CA). As a case study, data for the analysis were collected from 22 poultry companies in Iran. Moreover, due to a small data set and because of the fact that the authors must use large data set for applying data mining techniques, they employed k-fold cross validation method to validate the authors’ model. After assessing efficiency for each DMU and clustering them, followed by applied model and after presenting decision rules, results in precise and accurate optimizing technique.

Publisher

IGI Global

Subject

Modeling and Simulation,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3