Dynamic Prediction Model of Financial Asset Volatility Based on Bidirectional Recurrent Neural Networks

Author:

Liu Ji1,Xu Zheng2,Yang Ying3,Zhou Kun4ORCID,Kumar Munish5

Affiliation:

1. Xinjiang University, China

2. Shenzhen Institute of Information Technology, China

3. Party School of Nantong Municipal Committee of CPC, China

4. Dalian University of Technology, China

5. Maharaja Ranjit Singh Punjab Technical University, India

Abstract

Predicting financial market volatility is essential for investors and risk management. This study proposes a dynamic prediction model for financial asset volatility, with a Bi-directional Recurrent Neural Network (Bi-RNN) utilized to cleverly address market complexity. Our framework integrates Bi-RNN and gated recurrent units (GRU) to perform global optimization via particle swarm optimization algorithm (PSO). Bi-RNN combines historical data and future expectations, while GRU effectively solves long-term dependency issues through a gating mechanism, which enhances model generalization. Experimental results show that the model exhibits significant performance advantages on different financial datasets, along with strong learning and generalization capabilities superior to traditional methods. This research provides advanced and practical solutions for financial asset fluctuation prediction and is of positive significance for the greater accuracy of investment decisions and risk mitigation.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application and optimization of deep learning in the credit score of auto finance;Applied Mathematics and Nonlinear Sciences;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3