Enhancing Financial Investment Decision-Making With Deep Learning Model
Author:
Affiliation:
1. School of Economics and Management, Tianjin University of Technology and Education, China
2. Institute of Semiconductors, Chinese Academy of Sciences, China
Abstract
This paper introduces the ISSA-BiLSTM-TPA model to improve financial investment decision-making. Traditional deep learning models face limitations in handling the complexity and uncertainty of financial markets. Our approach incorporates attention mechanisms, Bidirectional Long Short-Term Memory (BiLSTM), and Temporal Pattern Attention (TPA) to enhance accuracy in modeling and forecasting financial time series. The attention mechanism focuses on crucial information, BiLSTM captures bidirectional dependencies, and TPA identifies optimal solutions. Experimental results show higher prediction accuracy compared to traditional models, offering more reliable decision support for financial practitioners. Continuous optimization aims to provide innovative decision-making tools for the finance industry, advancing deep learning technology in finance.
Publisher
IGI Global
Reference39 articles.
1. Barra, S., Carta, S. M., Corriga, A., Podda, A. S., & Recupero, D. R. (2020). Deep learning and time series-to-image encoding for financial forecasting. IEEE/CAA Journal of Automatica Sinica, 7(3), 683–692.
2. Image-Based Scam Detection Method Using an Attention Capsule Network
3. Estimating the Value-at-Risk by Temporal VAE
4. Fractional Neuro-Sequential ARFIMA-LSTM for Financial Market Forecasting
5. Caliskan, H., Yayla, O. F., & Genc, Y. (2023). A comparative analysis of synthetic data generation with VAE and CTGAN models on financial credit loan offer data [Paper presentation]. 2023 8th International Conference on Computer Science and Engineering (UBMK), location of conference.
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3