Performance Analysis of Hadoop YARN Job Schedulers in a Multi-Tenant Environment on HiBench Benchmark Suite

Author:

Bawankule Kamalakant Laxman1ORCID,Dewang Rupesh Kumar1,Singh Anil Kumar1

Affiliation:

1. Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India

Abstract

Big data processing technology marks a prominent place in today's market. Hadoop is an efficient open-source distributed framework used to process big data with fewer expenses utilizing a cluster of commodity machines (nodes). In Hadoop, YARN got introduced for effective resource utilization among the jobs. Still, YARN over-allocates the resources for some tasks of a job and keeps the cluster resources underutilized. This paper has investigated the CAPACITY and FAIR schedulers' practical utilization of resources in a multi-tenancy shared environment using the HiBench benchmark suite. It compares the above MapReduce job schedulers' performance in two scenarios and proposes some open research questions (ORQ) with potential solutions to help the upcoming researchers. On average, the authors found that CAPACITY and FAIR schedulers utilize 77% of RAM and 82% of CPU cores. Finally, the experimental evaluation proves that these schedulers over-allocate the resources for some of the tasks and keep the cluster resources underutilized in different scenarios.

Publisher

IGI Global

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3