Application of Optimized Partitioning Around Medoid Algorithm in Image Retrieval

Author:

Jin Yanxia1,Zhang Xin2,Jia Yao1

Affiliation:

1. North University of China, China

2. Beihang University, China

Abstract

In image retrieval, the major challenge is that the number of images in the gallery is large and irregular, which results in low retrieval accuracy. This paper analyzes the disadvantages of the PAM (partitioning around medoid) clustering algorithm in image data classification and the excessive consumption of time in the computation process of searching clustering representative objects using the PAM clustering algorithm. Fireworks particle swarm algorithm is utilized in the optimization process. PF-PAM algorithm, which is an improved PAM algorithm, is proposed and applied in image retrieval. First, extract the feature vector of the image in the gallery for the first clustering. Next, according to the clustering results, the most optimal cluster center is searched through the firework particle swarm algorithm to obtain the final clustering result. Finally, according to the incoming query image, determine the related image category and get similar images. The experimental comparison with other approaches shows that this method can effectively improve retrieval accuracy.

Publisher

IGI Global

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3