Multilayer Perceptron New Method for Selecting the Architecture Based on the Choice of Different Activation Functions

Author:

Ramchoun Hassan1,Idrissi Mohammed Amine Janati1,Ghanou Youssef2,Ettaouil Mohamed1

Affiliation:

1. FST, USMBA, Fes, Morocco

2. EST, UMI, Fes, Morocco

Abstract

Multilayer perceptron has a large amount of classifications and regression applications in many fields: pattern recognition, voice, and classification problems. But the architecture choice in particular, the activation function type used for each neuron has a great impact on the convergence and performance. In the present article, the authors introduce a new approach to optimize the selection of network architecture, weights, and activation functions. To solve the obtained model the authors use a genetic algorithm and train the network with a back-propagation method. The numerical results show the effectiveness of the approach shown in this article, and the advantages of the new model compared to the existing previous model in the literature.

Publisher

IGI Global

Subject

Information Systems and Management,Management Science and Operations Research,Strategy and Management,Information Systems,Management Information Systems

Reference16 articles.

1. A new model selection strategy in artificial neural networks

2. Neural architectures optimization and Genetic algorithms.;M.Ettaouil;WSEAS Transactions on Computers,2009

3. Architecture optimization model for the multilayer perceptron and clustering.;M.Ettaouil;Journal of Theoretical & Applied Information Technology,2013

4. Architecture Optimization and Training for the Multilayer Perceptron using Ant System.;Y.Ghanou;International Journal of Computational Science,2016

5. Comparison of new activation functions in neural network for forecasting financial time series

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3