Experimental Investigations on Wear Behavior of AA20204-Flyash-Nanostructured Redmud Hybrid Composites Synthesized by Stircasting

Author:

Madugula Anitha Santhoshi1,Krishna B. Murali2,Swaminaidu G.3

Affiliation:

1. Jntu Kakinada, Kakinada, India

2. Sri Sivani College of Engineering, Chilakapalem, India

3. Jntu Vizianagaram, Kakinada, India

Abstract

Red mud emerges as the major waste material during the production of alumina from bauxite and its potential as a filler material in metal matrices has not yet been reported. In view of this, an attempt is made to explore the possibility of making a class of wear resistant metal matrix hybrid composites with nano-structured red mud and micro sized fly ash particles as reinforcement. The micro-sized red mud particles have been modified to nano-structured red mud using high energy ball milling and after 30 hours of milling, the size was reduced from 100 microns to 30 nm. Composites were fabricated by stir casting and experiments were conducted under laboratory condition to assess the wear characteristics of AA2024- 15 wt% fly ash (micro-sized) and varying fractions (2 wt%, 4 wt% and 6 wt%) red mud (nano-structured) hybrid composites under different working conditions in pure sliding mode on a pin-on-disc machine. Tests were conducted with sliding speeds of 200 rpm, 400 rpm and 600 rpm at loads of 10N, 20N and 30N. The increased frictional thrust at higher load results in increased de-bonding and caused easy removal of material and hence the wear rate is increased with increase in normal load. The wear resistance of the composite is increased with increase in red mud fraction. This is due to the increase in surface energy and inter-atomic bonding with increase in nano-structured red mud fraction. The addition of redmud particles to the matrix phase causes dispersion strengthening and hence the strength as well. Wear resistance is increased with increase in redmud fraction.

Publisher

IGI Global

Subject

Surfaces, Coatings and Films,Biomaterials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3