Foreign Exchange Rate Forecasting Using Higher Order Flexible Neural Tree

Author:

Chen Yuehui1,Wu Peng1,Wu Qiang1

Affiliation:

1. University of Jinan, China

Abstract

Forecasting exchange rates is an important financial problem that is receiving increasing attention especially because of its difficulty and practical applications. In this chapter, we apply Higher Order Flexible Neural Trees (HOFNTs), which are capable of designing flexible Artificial Neural Network (ANN) architectures automatically, to forecast the foreign exchange rates. To demonstrate the efficiency of HOFNTs, we consider three different datasets in our forecast performance analysis. The data sets used are daily foreign exchange rates obtained from the Pacific Exchange Rate Service. The data comprises of the US dollar exchange rate against Euro, Great Britain Pound (GBP) and Japanese Yen (JPY). Under the HOFNT framework, we consider the Gene Expression Programming (GEP) approach and the Grammar Guided Genetic Programming (GGGP) approach to evolve the structure of HOFNT. The particle swarm optimization algorithm is employed to optimize the free parameters of the two different HOFNT models. This chapter briefly explains how the two different learning paradigms could be formulated using various methods and then investigates whether they can provide a reliable forecast model for foreign exchange rates. Simulation results showed the effectiveness of the proposed methods.

Publisher

IGI Global

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Financial Data Prediction by Artificial Sine and Cosine Trigonometric Higher Order Neural Networks;Emerging Capabilities and Applications of Artificial Higher Order Neural Networks;2021

2. Group Models of Artificial Polynomial and Trigonometric Higher Order Neural Networks;Emerging Capabilities and Applications of Artificial Higher Order Neural Networks;2021

3. Artificial Polynomial and Trigonometric Higher Order Neural Network Group Models;Artificial Higher Order Neural Networks for Modeling and Simulation;2013

4. Artificial Multi-Polynomial Higher Order Neural Network Models;Artificial Higher Order Neural Networks for Modeling and Simulation;2013

5. Artificial Sine and Cosine Trigonometric Higher Order Neural Networks for Financial Data Prediction;Nature-Inspired Computing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3