Affiliation:
1. Liverpool John Moores University, UK
Abstract
This chapter discusses the use of two artificial Higher Order Neural Networks (HONNs) models; the Pi- Sigma Neural Networks and the Ridge Polynomial Neural Networks, in financial time series forecasting. The networks were used to forecast the upcoming trends of three noisy financial signals; the exchange rate between the US Dollar and the Euro, the exchange rate between the Japanese Yen and the Euro, and the United States 10-year government bond. In particular, we systematically investigate a method of pre-processing the signals in order to reduce the trends in them. The performance of the networks is benchmarked against the performance of Multilayer Perceptrons. From the simulation results, the predictions clearly demonstrated that HONNs models, particularly Ridge Polynomial Neural Networks generate higher profit returns with fast convergence, therefore show considerable promise as a decision making tool. It is hoped that individual investor could benefit from the use of this forecasting tool.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献