Affiliation:
1. University of Minho, Portugal
Abstract
This chapter presents a hybrid evolutionary computation/neural network combination for time series prediction. Neural networks are innate candidates for the forecasting domain due to advantages such as nonlinear learning and noise tolerance. However, the search for the ideal network structure is a complex and crucial task. Under this context, evolutionary computation, guided by the Bayesian Information Criterion, makes a promising global search approach for feature and model selection. A set of 10 time series, from different domains, were used to evaluate this strategy, comparing it with a heuristic model selection, as well as with conventional forecasting methods (e.g., Holt-Winters & Box-Jenkins methodology).
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献