Affiliation:
1. Dakota State University, USA
Abstract
Modern organizations are faced with numerous information management challenges in an increasingly complex and dynamic environment. Vast amounts of data and myriads of models of reality are routinely used to predict key outcomes. Decision support systems (DSS) play a key role in facilitating decision making through management of quantitative models, data, and interactive interfaces (Power, 2000). The basic thrust of such applications is to enable decision-makers to focus on making decisions rather than being heavily involved in gathering data and conceiving and selecting analytical decision models. Accordingly, the number and complexity of decision models and of modeling platforms has dramatically increased, rendering such models a corporate (and national) resource (Muhanna & Pick, 1994). Further, Internet technology has brought many new opportunities to conduct business electronically, leading to increased globalization. Managers and decision makers are increasingly collaborating in distributed environments in order to make efficient and effective use of organizational resources. Thus, the need for distributed decision support in general, and model sharing and reuse in particular, is greater today than ever before. This has attracted significant attention from researchers in information systems-related areas to develop a computing infrastructure to assist such distributed model management (Krishnan & Chari, 2000). In this article, we focus on distributed model management advances, and the discussion is organized as follows. The next section provides a background on model management systems from a life-cycle perspective. This is followed by a critical review of current research status on distributed decision support systems from a model management viewpoint with a particular emphasis on Web services. Future trends in this area are then discussed, followed by concluding remarks.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Structured Modeling;Encyclopedia of Operations Research and Management Science;2013