Fuzzy Spatial Data Types for Spatial Uncertainty Management in Databases

Author:

Schneider Markus1

Affiliation:

1. University of Florida, USA

Abstract

Spatial database systems and geographical information systems are currently only able to support geographical applications that deal with crisp spatial objects, that is, objects whose extent, shape, and boundary are precisely determined. Examples are land parcels, school districts, and state territories. However, many new, emerging applications are interested in modeling and processing geographic data that are inherently characterized by spatial vagueness or spatial indeterminacy. This requires novel concepts due to the lack of adequate approaches and systems. In this chapter, we focus on an important kind of spatial vagueness called spatial fuzziness. Spatial fuzziness captures the property of many spatial objects in reality that do not have sharp boundaries and interiors or whose boundaries and interiors cannot be precisely determined. We will designate this kind of entities as fuzzy spatial objects. Examples are polluted areas, temperature zones, and lakes. We propose an abstract, formal, and conceptual model of so-called fuzzy spatial data types (that is, a fuzzy spatial algebra) introducing fuzzy points, fuzzy lines, and fuzzy regions in the two-dimensional Euclidean space. This chapter provides a definition of their structure and semantics, which is supposed to serve as a specification of their implementation. Furthermore, we introduce fuzzy spatial set operations like fuzzy union, fuzzy intersection, and fuzzy difference, as well as fuzzy topological predicates as they are useful in fuzzy spatial joins and fuzzy spatial selections. We also sketch implementation strategies for the whole type system and show their integration into databases. An outlook on future research challenges rounds out the chapter.

Publisher

IGI Global

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Direction based method for representing and querying fuzzy regions;Multimedia Tools and Applications;2024-01-05

2. Boundary of a fuzzy set and its application in GIS: a review;Artificial Intelligence Review;2022-11-27

3. Building fuzzy areal geographical objects from point sets;Transactions in GIS;2021-10-10

4. A Fuzzy Logic-Based Approach for Modelling Uncertainty in Open Geospatial Data on Landfill Suitability Analysis;ISPRS International Journal of Geo-Information;2020-12-09

5. Household Level Vulnerability Analysis—Index and Fuzzy Based Methods;ISPRS International Journal of Geo-Information;2020-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3