The Impact of Missing Data on Data Mining

Author:

Brown Marvin L.1,Kros John F.2

Affiliation:

1. Hawaii Pacific University, USA

2. East Carolina University, USA

Abstract

Data mining is based upon searching the concatenation of multiple databases that usually contain some amount of missing data along with a variable percentage of inaccurate data, pollution, outliers, and noise. The actual data-mining process deals significantly with prediction, estimation, classification, pattern recognition, and the development of association rules. Therefore, the significance of the analysis depends heavily on the accuracy of the database and on the chosen sample data to be used for model training and testing. The issue of missing data must be addressed since ignoring this problem can introduce bias into the models being evaluated and lead to inaccurate data mining conclusions.

Publisher

IGI Global

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing eCommerce Data;Advances in Electronic Commerce;2024-09-27

2. Application of Data Fusion via Canonical Polyadic Decomposition in Risk Assessment of Musculoskeletal Disorders in Construction: Procedure and Stability Evaluation;Journal of Construction Engineering and Management;2021-08

3. Handling of missing data to improve the mining of large feed databases1;Journal of Animal Science;2013-01-01

4. Imprecise Data and the Data Mining Process;Encyclopedia of Data Warehousing and Mining, Second Edition;2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3