Metadata for Social Recommendations

Author:

Vuorikari Riina1,Manouselis Nikos2,Duval Erik1

Affiliation:

1. Katholieke Universiteit Leuven, Belgium

2. Agricultural University of Athens, Greece

Abstract

Social information retrieval systems, such as recommender systems, can benefit greatly from sharable and reusable evaluations of online resources. For example, in distributed repositories with rich collections of learning resources, users can benefit from evaluations, ratings, reviews, annotations, etc. that previous users have provided. Furthermore, sharing these evaluations and annotations can help attain the critical mass of data required for social information retrieval systems to be effective and efficient. This kind of interoperability requires a common framework that can be used to describe in a reusable manner the evaluation approach, as well as the results of the evaluation. This chapter discusses this concept, focusing on the rationale for a reusable and interoperable framework, that can be used to facilitate the representation, management and reuse of results from the evaluation of learning resources. For this purpose, we review a variety of evaluation approaches for learning resources, and study ways in which evaluation results may be characterised, so as to draw requirements for sharable and reusable evaluation metadata. Usage scenarios illustrate how evaluation metadata can be useful in the context of recommender systems for learning resources.

Publisher

IGI Global

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Recommender Model in E-learning Environment;Arabian Journal for Science and Engineering;2016-08-27

2. Multi-Criteria Recommender Systems;Recommender Systems Handbook;2015

3. Towards Automated Evaluation of Learning Resources Inside Repositories;Recommender Systems for Technology Enhanced Learning;2014

4. A brief overview of quality inside learning object repositories;Proceedings of the XV International Conference on Human Computer Interaction - Interacción '14;2014

5. On the Search for Intrinsic Quality Metrics of Learning Objects;Communications in Computer and Information Science;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3