A Concept Learning-Based Patient-Adaptable Abnormal ECG Beat Detector for Long-Term Monitoring of Heart Patients

Author:

Li Peng1,Chan Kap L.1,Fu Sheng1,Krishnan Shankar M.1

Affiliation:

1. Nanyang Technological University, Singapore

Abstract

n this chapter, a new concept learning-based approach is presented for abnormal ECG beat detection to facilitate long-term monitoring of heart patients. The novelty in our approach is the use of complementary concept—“normal” for the learning task. The concept “normal” can be learned by a v-support vector classifier (v-SVC) using only normal ECG beats from aspecific patient to relieve the doctors from annotating the training data beat by beat to train a classifier. The learned model can then be used to detect abnormal beats in the long-term ECG recording of the same patient. We have compared with other methods, including multilayer feedforward neural networks, binary support vector machines, and so forth. Experimental results on MIT/BIH arrhythmia ECG database demonstrate that such a patient-adaptable concept learning model outperforms these classifiers even though they are trained using tens of thousands of ECG beats from a large group of patients.

Publisher

IGI Global

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybradization of Emperical Mode Decomposition and Machine Learning for Categorization of Cardiac Diseases;2023 IEEE 13th International Conference on Electronics and Information Technologies (ELIT);2023-09-26

2. Kernel Machines for Imbalanced Data Problem in Biomedical Applications;Support Vector Machines Applications;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3