Affiliation:
1. Punjabi University Patiala, Patiala, India
2. Kurukshetra University, Kurukshetra, India
Abstract
Cloud computing is the internet-based technique where the users utilize the online resources for computing services. The attacks or intrusion into the cloud service is the major issue in the cloud environment since it degrades performance. In this article, we propose an adaptive lion-based neural network (ALNN) to detect the intrusion behaviour. Initially, the cloud network has generated the clusters using a WLI fuzzy clustering mechanism. This mechanism obtains the different numbers of clusters in which the data objects are grouped together. Then, the clustered data is fed into the newly designed adaptive lion-based neural network. The proposed method is developed by the combination of Levenberg-Marquardt algorithm of neural network and adaptive lion algorithm where female lions are used to update the weight adaptively using lion optimization algorithm. Then, the proposed method is used to detect the malicious activity through training process. Thus, the different clustered data is given to the proposed ALNN model. Once the data is trained, then it needs to be aggregated. Subsequently, the aggregated data is fed into the proposed ALNN method where the intrusion behaviour is detected. Finally, the simulation results of the proposed method and performance is analysed through accuracy, false positive rate, and true positive rate. Thus, the proposed ALNN algorithm attains 96.46% accuracy which ensures better detection performance.
Subject
Materials Chemistry,Economics and Econometrics,Media Technology,Forestry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Research on Fault Detection and Simulation of Power Distribution Network Based on Fuzzy Clustering Algorithm;2024 Asia-Pacific Conference on Software Engineering, Social Network Analysis and Intelligent Computing (SSAIC);2024-01-10