Automated Knowledge Extraction of Liver Cysts From CT Images Using Modified Whale Optimization and Fuzzy C Means Clustering Algorithm
Author:
Affiliation:
1. Department of Computer Science and Engineering, I.K. Gujral Punjab Technical University, Jalandhar, India
2. Department of Computer Science and Engineering, Baba Banda Singh Bahadur Engineering College, Fatehgarh Sahib, India
Abstract
In this study, the integrated modified whale optimization and modified fuzzy c-means clustering algorithm using morphological operations are developed and implemented for appropriate knowledge extraction of a cyst from computer tomography (CT) images of the liver to facilitate modern intelligent healthcare systems. The proposed approach plays an efficient role in diagnosing the liver cyst. To evaluate the efficiency, the outcomes of the proposed approach have been compared with the minimum cross entropy based modified whale optimization algorithm (MCE and MWOA), teaching-learning optimization algorithm based upon minimum cross entropy (MCE and TLBO), particle swarm intelligence algorithm (PSO), genetic algorithm (GA), differential evolution (DE) algorithm, and k-means clustering algorithm. For this, various parameters such as uniformity (U), mean structured similarity index (MSSIM), structured similarity index (SSIM), random index (RI), and peak signal-to-noise ratio (PSNR) have been considered. The experimental results show that the proposed approach is more efficient and accurate than others.
Publisher
IGI Global
Subject
Management of Technology and Innovation,Information Systems
Reference58 articles.
1. HSMA_WOA: A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images
2. A two-dimensional image segmentation method based on genetic algorithm and entropy
3. CSFCM: An improved fuzzy C-Means image segmentation algorithm using a cooperative approach
4. Multi-stage fuzzy swarm intelligence for automatic hepatic lesion segmentation from CT scans
5. A Clinical Support System for Brain Tumor Classification Using Soft Computing Techniques
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Differential CNN and KELM integration for accurate liver cancer detection;Biomedical Signal Processing and Control;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3