Towards Design of an Efficient Sensing Data Acquisition scheme for UAVs-assisted Wireless Sensor Networks

Author:

Abstract

This paper investigates sensing data acquisition issues from large-scale hazardous environments using UAVs-assisted WSNs. Most of the existing schemes suffer from low scalability, high latency, low throughput, and low service time of the deployed network. To overcome these issues, we considered a clustered WSN architecture in which multiple UAVs are dispatched with assigned path knowledge for sensing data acquisition from each cluster heads (CHs) of the network. This paper first presents a non-cooperative Game Theory (GT)-based CHs selection algorithm and load balanced cluster formation scheme. Next, to provide timely delivery of sensing information using UAVs, hybrid meta-heuristic based optimal path planning algorithm is proposed by combing the best features of Dolphin Echolocation and Crow Search meta-heuristic techniques. In this research work, a novel objective function is formulated for both load-balanced CHs selection and for optimal the path planning problem. Results analyses demonstrate that the proposed scheme significantly performs better than the state-of-art schemes.

Publisher

IGI Global

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3