NoSQL Database Classification

Author:

Acharya Biswaranjan1,Jena Ajaya Kumar1,Chatterjee Jyotir Moy2,Kumar Raghvendra3,Le Dac-Nhuong4

Affiliation:

1. School of Computer Engineering, KIIT University, Bhubaneswar, India

2. Department of Computer Science and Engineering, GD-RCET, Bhilai, India

3. Department of Computer Science and Engineering, LNCT College, Bhopal, India

4. Faculty of Information Technology, Haiphong University, Haiphong, Vietnam

Abstract

The rapid growth in the digital world in form of exponentiation to accommodate huge amount of structured, semi-structured, unstructured and hybrid data received from different sources. By using the conventional data management tools, it is quite impossible to manage this semi-structured and unstructured data for which a non-relational database management system such as NoSQL and NewSQL are used to handle such types of data. These types of semi-structured and structured data are generally considered ‘Big Data.' This article describes the basic characteristics, background and the models of NoSQL used for big data applications. In this work, the authors surveyed different NoSQL characteristics used by the researchers and try to compare the strength and weakness of different NoSQL databases.

Publisher

IGI Global

Reference42 articles.

1. Experimental evaluation of NoSQL databases.;V.Abramova;International Journal of Database Management Systems,2014

2. Vieira, M. R., Figueiredo, J. M. D., Liberatti, G., & Viebrantz, A. F. M. (2012). Bancos de Dados NoSQL: conceitos, ferramentas, linguagens e estudos de casos no contexto de Big Data. Simpósio Brasileiro de Bancos de Dados.

3. Evaluation of Contemporary Graph Databases for Efficient Persistence of Large-Scale Models.

4. Evaluation of Contemporary Graph Databases for Efficient Persistence of Large-Scale Models.

5. Baxter, W. F., Gelinas, R. G., Guyer, J. M., Huck, D. R., Hunt, M. F., Keating, D. L., & Yeung, S. N. (1999). U.S. Patent No. 5,887,146. Washington, DC: U.S. Patent and Trademark Office.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3